Wissenschaftliche Modelle und Konstrukte | Die Photonen-Ruhemasse | 01.03.2017 |
Die Photonen-Ruhemasse
Konstrukt
[1] m0 = 0
Modell
[2] m0 = f (ν)
[3] m0 = F ( Materiewellen, relativistische Massen-Beziehung, Elimination von v)
[4] λ = h / m0 V² DE BROGLI
[5] m = m0 / ( 1 - V²/c² )1/2 EINSTEIN
[6] m = E / c2 ; E = hν PLANCK
[7] c = λ ν ; λ = c/ ν HUYGENS
[8] (5)² m ² = m0² / ( 1 - V²/c² )
[9] m² - m² V²/c² = m0² |* c²
[10] m²c² - m²V² = m0² c² | + m²v² - m0² c²
m²c² - m0² c² = m²V² | : m²
[11] c² - m0²/m²c² = V² ; m² = h²ν²/c4 (6)
[12] c² - m0²/( h²ν²/ c4)c² = V²
[13] c² - m0²/ h²ν² c² = v² =: V1²
[14] (4)² λ² = h² / m0² V² |* V² | :λ²
[15] V² = h² / m0² λ² ; λ² = c² / ν²
[16] V² = h² / m0² (c² / ν²) ; | *v²
[17] V2² : = V² = h² ν²/ m0²c²
[18] V1² = V2²
[19] c² - m0²/ h²ν² c² = h² ν²/ m0²c² | * m0²c² (13,17)
[20] m0²c4 - m04/ h²ν² = h² ν² |+ m04/ h²ν² - m0²c4
[22] m04/ h²ν² - m0²c4 + h²ν² = 0 ; M := m0²
[23] M²/ h²ν² - M c4 + h²ν² = 0
[24] M² - M h²ν²c4 + h4ν4 = 0
[25] M = h²ν²c4/2 ± ( h4ν4c8/4 - h4ν4 )1/2
[26] m0 = [ h²ν²c4/2 ± ( h4ν4c8/4 - h4ν4 )1/2 ]1/2
[27] m0 ≈ 1,2 * 10-51 g
|